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ABSTRACT 

A. Kulakoff [9] proved that forp > 2 the number Nk = Nk(G) of solutions of the 
• /( . . . . . . .  

equanon x p = e in a non-cychc p-group G is dwlslble by pk+t. This result is a 
generalization of the well-known theorem of G. A. Miller asserting that the number 
Ck = Ck (G) of cyclic subgroups of order pk > p > 2 is divisible by p. In this note 
we show that, as a rule: (1) if k > 1, then Nk =-- O(modpk+p); (2) if k > 2, then 
Ck =- 0(modpP). These facts are generalizations of many results from [1-5,8,9]. 

§1. Let  G be a f inite p - g r o u p  with exp G >_ pk .  F o r  M C G, we put  Ok ( M )  = 

Ix E M i x  pk = e I , ~k (M)  = <Ok(M)),  N k ( M )  = I O ~ ( M ) I ,  Nk = Nk(G) .  The 

number  Ck was def ined  in the abs t rac t .  

We note  tha t  the  theorems  o f  K u l a k o f f  and  Mil ler  are t rue  for  p = 2 unless G 

is cyclic or  a 2 -group  o f  max ima l  class ([3], the  congruence  N~ = 0 ( m o d  4) was 

proved independent ly  by A l p e r i n - F e i t - T h o m p s o n  using the character  theory).  The 

fo l lowing L e m m a  is obvious .  

LEMMA 1. I f  expG >_pk, t h e n p X - l ( p _  1)Ce = N k - - N e - l .  

A finite p -g roup  G is called regular if  for all x ,y  E G there exists d E ( x , y ) '  such 

that  (xy) p = xPyPd p. G is called absolutely regular if  I G : ( x  p Ix E G)I < PP. The 

fo l lowing facts are  due to Ph.  Hal l .  

LEMMA 2. (a) An  absolutely regular p-group is regular. 

(b) I f  the nilpotency class c l ( G )  of  G is at most p - 1, then G is regular. 

(c) I f  G is regular, then exp ~2k(G) <--pk. 
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We note that an absolutely regular 2-group is cyclic and that an absolutely reg- 

ular 3-group is metacyclic. Recall that a non-abelian p-group G of  order p "  is 

called ap-group of maximal class if c l (G)  = n - 1. The following facts are due to 

N. Blackburn [6,7]. 

LEMMA 3. (a) A p-group G contains a normal subgroup of order p p and of ex- 

ponent p unless G is absolutely regular or of  maximal class. 

(b) Let G be a p-group of maximal class and of order p", n > p + 1. Then G 

is non-regular and 

(bl)  G does not contain a normal subgroup of order p p and of exponent 

P; 
(b2) if GI . . . . .  Gp+l are maximal subgroups of G, then exactly p of them, 

say G~ . . . . .  Gp, are of maximal class and Gp+l is absolutely regular. 

Furthermore, 1121 (Gp+l)l = pp-i and exp Gp+l = exp G. • 

It is well known that Ck -- 0 ( m o d p P - l ) ,  k > 1, and Ark --- 0 ( m o d p  k+p-l) un- 

less G is absolutely regular or a p-group of maximal class. In [4,5] all p-groups G 

with I ~2 (G)I < p2+p and Ck < PP, k > 1, were classified. All these results are easy 

consequences of  the main theorem of  this note. 

§2. In this section we prove three lemmas essential in the sequel. 

LEMMA 4. Let G be a p-group of  maximal class and of  order pn, n > 1 + p. 

Let k > I and exp G = pt, t >_ k. I f  N k ~ O(modpk+P),  then one and only one of 

the following assertions takes place: 

(a) p = 2 ;  

(b) k = t = 2 ,  n = p +  l; 

(c) p = 3, k = 2, t > 2, N2 --- 34 (mod 35). 

PROOF. Since the case p = 2 is trivial, we assume that  p > 2. We prove by in- 

duction on n. 

Suppose that k = t. Then Nk = I GI < pk+p. From Lemma 3(b) it follows that 

k = 2 and n = p + 1. So we assume that k < t. In this case n > p + 1. Using nota- 

tions of  Lemma  3(b2), put G,+~ = T and L = G1 tq G2 (this is the Frattini sub- 

group of  G).  Then: 

P 

(*) N~ = Nk(G) = N~(T) + ~,,N~(Gi) - p N k ( L ) .  
i=1 

In fact, if x E Gi (3 G~, i ¢ j ,  then x E L and x appears at the right side of  (*) ex- 

actly p + 1 - p  = 1 times. We have Iflk(T)l =pkCp-~ since k < t (Lemma 3(b2)). 
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Suppose that p > 3. Then Nk(T)  = [fie(T)[ - O(modpk+p), and Nk(Gi)  - 

0(modpk+P) ,  by induction, 1 <_ i < p. Since ilk(L) = i lk(T),  then Nk (L )  = 

Nk (T )  =- O(modpk+P).  Hence, N~ - 0 (modpk+P) ,  by (*), which is a 

contradiction. 

Suppose that p = 3. We have N2(T) = 34 and N2(Gi) - 34(mod 35) for i = 

1,2,3, by induction. Since N2(L)  = N2(T),  then 3N2(L) - 0(rood 35) and N2 - 

34(mod 3s), by(*). Now let k > 2. Then Nk(T)  = 32k -= 0 (mod  3k+3), Nk(L)  = 

Nk(T)  and, by induction, Nk(Gi)  -- 0(mod  3 k+3) for i = 1,2,3. Hence, Ark -- 

0 (mod  3k+3), by (*), which is a contradiction. • 

LEMMA 5. Let  R be a normal subgroup o f  order p p and o f  exponent p & a p- 

group G. Suppose that G /R  is cyclic and IG/RI > p. Let e x p G  > pk  and pu t  

~ = ( 0  i f f l l ( G ) = R ;  

1 otherwise. 

Then Nk = pk+p-l+, and exp f~k(G) = pk. 

PROOF. Let R1 be a G-admissible subgroup of  order pp-2  in R, G ° = 

G/RI ,  C ° = Coo (R °). Then C ° is abelian and so C is regular (Lemma 2(b)) 

and I G : C I < p. Hence I fll (C)] = pP+~ and fll (C) = [21 (G).  The remaining as- 

sertions are now obvious. • 

LEMMA 6. Let  R be a normal abelian subgroup o f  type (2,2) of  a 2-group G 

such that G /R  is o f  maximal class and o f  order 2 n+l with a cyclic subgroup T/R 

o f  index 2. Let exp G > 2 k > 2. Then Nk ~ 0(mod  2 k+2) ¢~ fll (T) = R ¢~ Ng =- 
2 k+l (mod 2k+2). 

PROOF. Let x E G - T, x 2 E R. Then Ok (xR) = xR and the contribution of all 

such xR in Ark is equal to 0 if G/R is a generalized quaternion group, 2 ~+z if G/R 

is dihedral, 2 n+l if G/R  is semi-dihedral. 

L e t y  E G - T, y2 ~ R a n d y  4 E R. Then IOk((y,R))  - O2(T)[ = 8e where 

e = ( 0 1  if fl~ ( G) = R and k = 2; 

otherwise. 

We note that such y does not exist if G/R  is dihedral. 

(i) Let fl~ (T) = R. Then exp G = exp T = 2 "+~. Since exp G > 2 k, we have n _> 

k and N , ( T )  = 2 k+l. 
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Suppose that k = 2. Then 

23 if G/R is a generalized quaternion group; 

N2 = 23 + 2 n+2 if G/R is dihedral; 

23 + 2 n+l if G/R is semi-dihedral. 

In any case n _> 2 and if G/R is semi-dihedral, then n _> 3. Hence, we have k + 

p = 4, N 2 --- 23 (mod 24). 

If k > 2, then in any case Ark = 2 k+l d- 2 n+2 -- 2 k+l (mod 2k+2). 

(ii) Let i l l (T)  > R. Then lfll (T)I = 8, Iflk(T)l = 2 k+2, exp G = 2" _> 2 k+2, n _> 

k + 1. Then Nk(G) = N~ -- 2 k+2 q- 2 n+2 = 0 (mod  2k+2). 

Hence Ng ~ 0 (mod 2 k+2) ¢=~ ill ( T )  = R ~ Nk -- 2 k+l (mod 2 k+2). • 

§3. In this section we prove 

MAIN THEOREM. Let exp G >_ pk > p. I f  Nk ~ 0(modpk+p) ,  then one and 

only one of  the following assertions takes place: 

(a) G is regular and Iflk(G)[ < pk+p; 

(b) G is a 2-group of maximal class; 

(c) G is 3-group of maximal class, k = 2 and tG[ 4: 35; 

(d) k = 2,/7 > 3, IGI =pp+l ,  G is ap-group of maximal class; 

(e) ]ill (G)I = pP, G/ill (G) is cyclic of order > p; 

(f) G is a 2-group from Lemma 6. 

PROOV. Induction on n. By Lemmas 4-6, all groups (a-f) satisfy the condition 

of  the Theorem. Suppose that G ~ (a-f).  Then G contains a normal subgroup R 

of  order pP and of  exponent p (Lemma 3(al)) or G is absolutely regular. By 

Lemma 2(a), we may assume that G is not absolutely regular. Since G/R is not cy- 

clic (Lemma 5), G/R contains a normal subgroup L/R such that G/L is elemen- 

tary abelian of  order p2. Let GI/L . . . . .  Gp+]/L be all maximal subgroups of  

G/L. Then as in Lemma 4 we have 

p+l 
(*) Nk = ~a Nk( Gi) - pNk(L).  

i=1 

Since expG/R >_ pk-1 and G/R is non-cyclic, then IGI _> pk+p. If  exp G = 

pk, then Nk = I G] --- 0 (mod pC+p) which is impossible. Hence exp G > p k. Then 

exp Gi > expL _>pk. By [2] (see also [1]), we havepNk(L) - 0 ( m o d p  ~+p) i f L  is 

not of  maximal class. Suppose that L is of  maximal class. Then ILl = pp+l 

(Lemma 3(bl)). Since exp G > p2, then G/R has a cyclic subgroup Gi/R of order 
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p2. Since L < Gi, then L is regular (Lemma 5) and this contradicts Lemma 3(b). 

Since Ark ~ 0(modpk+p), we may assume that Nk(GI)  ~ 0(modpk+P). By induc- 

tion, GI E (a-f). 

Suppose that GI is regular. Since R < fll (GI), then 112k(G1)l >-pk+p-1. Since 

112k (G1)l < P k+p, then 112k (G1)[ = p k+p-i and G I /R is cyclic (we note that if p = 

2, then G1 is abelian). Then 121(G1) = R (Lemma 5). 

Suppose that G1 is a p-group of maximal class. Since G1 contains a normal sub- 

group R of order pP and of exponent p, then [G[ = pp+l (Lemma 3(a)), L = R 

and exp G = p2 < pk which is a contradiction. 

Thus, we have to consider the following cases. 

(i) Q / R  is cyclic. If I G1/R I = p, then R = L and exp G = p2 which is a con- 

tradiction. Hence ]G1/R] > p. Then exactly p maximal subgroups of G/R,  say 

GI /R  . . . .  , Gp/R, are cyclic (G/R has exactly p + 1 maximal subgroups and they 

are Gi/R,  1 <_ i <_p + 1) and Gp+~/R is non-cyclic abelian (since, by Lemma 6, 

the factorgroup G/R is not a generalized quaternion group). By induction, we have 

Nk(Gp+1) - O(modpg+P). Let S / R  be a subgroup of order p in G1/R. Then 

S /R  <_ @(GI/R) <- Gi /R,  1 <_ i _<p + 1. So we have Nk(Gi)  = pk+p-l+~ for all 

1 < i ___p (c has the same value as in Lemma 5). By (*), we have Nk - -pNk(Gl )  = 

pk+p+~ _ O(modpk+p) which is a contradiction. 

(ii) GI /R  is a 2-group of maximal class and of order 2 "÷1, all G J R  are non- 

cyclic. Let T1/R be a cyclic subgroup of index 2 in G1/R which is normal in G/R 

(such 7"1/R exists since G 1/g contains an odd number of cyclic subgroups of in- 

dex 2). We have I G : TI ] = 4. One verifies as in Lemma 5 that G/T1 is abelian of 

type (2,2). So we may assume that L = T1. By Lemma 15 from [2] we may assume 

that G2/R is of maximal class and G3/R is not of maximal class. Hence, by in- 

duction, Nk(G3) - 0(mod 2k+2). Let S /R  be a subgroup of  order 2 in T1/R and 

let T2/R be a cyclic subgroup of index 2 in G2/R. We have fl~(T1) = R, hence 

fll (T2) = fll (S) = R. Then Nk(G2) =- 2 k+l (mod 2k+2), by Lemma 6. Therefore, 

Nk =- 0(mod 2k+z), by (*), which is a contradiction. • 

As a consequence of Main Theorem we obtain the following result. 

COROt~ARY 1. Let k > 2. Then Ck -~ 0 ( m o d p  p) ~ G ~ (a,b,c',d-f) where (c') 

G is a 3-group o f  maximal class, k = 3. 

PROOF. We may assume that exp G _> pk. Suppose that G ~ (a,b,c',d-f). By 

the Main Theorem, we have Ark -- xpg+P, Nk-I = ypk+p-I for certain natural num- 

bers x,y. Then, by Lemma 1, we have Ck = (Nk -- N k - I ) / ( P  -- 1)P g-I = (px  -- 

y )pP  -- O(modpP).  • 
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One can give a proof of Corollary 1 independent of  the Main Theorem. For this 

one has to prove analogs of  Lemmas 4-6 for Ck and to use an analog of  (*) for 

ck. 

COROLLARY 2. If G q~ (a ,b ,c 'd - f ) ,  then the number of elements of  order pk, 

k > 2, in G is divisible byp  k+p-I . • 

I believe that Corollary 1 is not true for k = 2. For a regular p-group H we put 

w(H) = logp] fll (H)] .  For 1 _< s _< p - 1, we denote by Mk(S) the number of ab- 

solutely regular subgroups F i n  G with w(F) = s, IF] =p~ and e x p F >  p2 .  

CONJECTURE. If  Mk(S) ~ O(modpP-S),  then G is absolutely regular or a p-  

group of  maximal class. 
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